login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350410
G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: 0 = [x^n] Sum_{m=0..n} A(x)^(m^2) / m!, for n > 1.
2
-1, 1, 3, 12, 116, -534, -19083, 4653416, 8687989872, -128647855586426, -17178731504646708274, 22932060477876906089601744, 336748983792218322012229442319058, -59340140012235302782558826850918965528904, -135935979554634873389993183019614435570206186506348, 4359616519227623971178976912185258573259921937219097427608884
OFFSET
0,3
COMMENTS
This sequence is conjectured to consist entirely of integers.
EXAMPLE
G.f.: A(x) = -1 + x + 3*x^2 + 12*x^3 + 116*x^4 - 534*x^5 - 19083*x^6 + 4653416*x^7 + 8687989872*x^8 - 128647855586426*x^9 + ...
The table of coefficients of x^k in A(x)^(n^2), k >= 0, begins:
n=1: [-1, 1, 3, 12, 116, -534, -19083, 4653416, ...];
n=2: [1, -4, -6, -16, -301, 3720, 72702, -18849144, ...];
n=3: [-1, 9, -9, -24, 486, -11844, -124941, 43265088, ...];
n=4: [1, -16, 72, -32, -1116, 27216, 75136, -78475712, ...];
n=5: [-1, 25, -225, 800, 1050, -58320, 280175, 123329600, ...];
n=6: [1, -36, 522, -3792, 11259, 90792, -1375170, -171395640, ...];
n=7: [-1, 49, -1029, 11956, -79184, 141414, 3229737, 203778120, ...];
n=8: [1, -64, 1824, -30336, 319504, -1977792, 1553280, -204791552, ...]; ...
in which, by definition, the following sums along the columns equal zero:
0 = (3)/1! + (-6)/2! ;
0 = (12)/1! + (-16)/2! + (-24)/3! ;
0 = (116)/1! + (-301)/2! + (486)/3! + (-1116)/4! ;
0 = (-534)/1! + (3720)/2! + (-11844)/3! + (27216)/4! + (-58320)/5! ;
0 = (-19083)/1! + (72702)/2! + (-124941)/3! + (75136)/4! + (280175)/5! + (-1375170)/6! ;
0 = (4653416)/1! + (-18849144)/2! + (43265088)/3! + (-78475712)/4! + (123329600)/5! + (-171395640)/6! + (203778120)/7! ; ...
One may continue the above pattern to determine all the terms of this sequence.
PROG
(PARI) {a(n) = my(A=[-1, 1]); for(i=1, n, A=concat(A, 0);
A[#A] = (-1)^(#A-1)*(#A-2)! * polcoeff( sum(m=0, #A-1, Ser(A)^(m^2) / m!) , #A-1) ); A[n+1]}
for(n=0, 15, print1(a(n), ", "))
CROSSREFS
Sequence in context: A119649 A308144 A320257 * A009254 A377066 A133987
KEYWORD
sign
AUTHOR
Paul D. Hanna, Dec 29 2021
STATUS
approved