login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A350343
Square numbers k that are abelian orders.
4
1, 4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1225, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4225, 4489, 5041, 5329, 5929, 6241, 6889, 7225, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 13225, 14161, 16129, 17161, 17689, 18769, 19321, 20449, 22201, 22801
OFFSET
1,2
COMMENTS
k must be the square of a squarefree number. Actually, k must be the square of a cyclic number (A003277).
Number of the form (p_1*p_2*...*p_r)^2 where the p_i are distinct primes and no (p_j)^2-1 is divisible by any p_i.
The smallest term with exactly n distinct prime factors is given by A350341.
From the term 25 on, no term can be divisible by 2 or 3.
LINKS
FORMULA
a(n) = A350342(n)^2.
EXAMPLE
For primes p, p^2 is a term since every group of order p^2 is abelian. Such group is isomorphic to either C_{p^2} or C_p X C_p.
For primes p, q, if p^2 !== 1 (mod q), q^2 !== 1 (mod p), then p^2*q^2 is a term since every group of that order is abelian. Such group is isomorphic to C_{p^2*q^2}, C_p X C_{p*q^2}, C_q X C_{p^2*q} or C_{p*q} X C_{p*q}.
PROG
(PARI) isA051532(n) = my(f=factor(n), v=vector(#f[, 1])); for(i=1, #v, if(f[i, 2]>2, return(0), v[i]=f[i, 1]^f[i, 2])); for(i=1, #v, for(j=i+1, #v, if(v[i]%f[j, 1]==1 || v[j]%f[i, 1]==1, return(0)))); 1 \\ Charles R Greathouse IV's program for A051532
isA350343(n) = issquare(n) && isA051532(n)
CROSSREFS
Cf. A051532 (abelian orders), A003277 (cyclic numbers), A350342, A350341.
A350152 = A350322 U A350323 is a subsequence. A350345 is the subsequence of squares of composite numbers.
Sequence in context: A179707 A247078 A077438 * A001248 A280076 A359757
KEYWORD
nonn
AUTHOR
Jianing Song, Dec 25 2021
STATUS
approved