The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A350108 a(n) = Sum_{k=1..n} k * floor(n/k)^3. 3
 1, 10, 32, 87, 153, 309, 443, 722, 1005, 1443, 1785, 2605, 3087, 3951, 4875, 6154, 6988, 8809, 9855, 12057, 13853, 16001, 17543, 21347, 23478, 26484, 29440, 33696, 36162, 41994, 44816, 50351, 54755, 59909, 64577, 73524, 77558, 84002, 90142, 100072, 105034 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS Seiichi Manyama, Table of n, a(n) for n = 1..10000 FORMULA a(n) = Sum_{k=1..n} k * Sum_{d|k} (d^3 - (d - 1)^3)/d. G.f.: (1/(1 - x)) * Sum_{k>=1} (k^3 - (k - 1)^3) * x^k/(1 - x^k)^2. From Vaclav Kotesovec, Aug 03 2022: (Start) a(n) = A024916(n) + 3*A143128(n) - 3*A143127(n). a(n) ~ Pi^2*n^3/6 - 3*n^2*log(n)/2. (End) MATHEMATICA a[n_] := Sum[k * Floor[n/k]^3, {k, 1, n}]; Array[a, 40] (* Amiram Eldar, Dec 14 2021 *) Accumulate[Table[(1 + 3*k)*DivisorSigma[1, k] - 3*k*DivisorSigma[0, k], {k, 1, 50}]] (* Vaclav Kotesovec, Dec 16 2021 *) PROG (PARI) a(n) = sum(k=1, n, k*(n\k)^3); (PARI) a(n) = sum(k=1, n, k*sumdiv(k, d, (d^3-(d-1)^3)/d)); (PARI) my(N=66, x='x+O('x^N)); Vec(sum(k=1, N, (k^3-(k-1)^3)*x^k/(1-x^k)^2)/(1-x)) (Python) from math import isqrt def A350108(n): return -(s:=isqrt(n))**4*(s+1)+sum((q:=n//k)*(k**2*(3*(q+1))+k*(q*((q<<1)-3)-3)+q+1) for k in range(1, s+1))>>1 # Chai Wah Wu, Oct 31 2023 CROSSREFS Column 3 of A350106. Cf. A024916, A143128, A143127, A318742. Sequence in context: A202804 A155192 A229720 * A024933 A198646 A356277 Adjacent sequences: A350105 A350106 A350107 * A350109 A350110 A350111 KEYWORD nonn AUTHOR Seiichi Manyama, Dec 14 2021 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 10 22:38 EST 2023. Contains 367717 sequences. (Running on oeis4.)