login
A349766
Numbers of the form 2*t^2-4 when t > 1 is a term in A001541.
2
14, 574, 19598, 665854, 22619534, 768398398, 26102926094, 886731088894, 30122754096398, 1023286908188734, 34761632124320654, 1180872205318713598, 40114893348711941774, 1362725501650887306814, 46292552162781456489998, 1572584048032918633353214, 53421565080956452077519374
OFFSET
1,1
COMMENTS
Equivalently: integers k such that k$ / (k/2+1)! and k$ / (k/2+2)! are both squares when A000178 (k) = k$ = 1!*2!*...*k! is the superfactorial of k (see A348692 for further information).
The 3 subsequences of A349081 are A035008, A139098 and this one.
FORMULA
a(n) = 2*(cosh(2*n*arcsinh(1)))^2 - 4.
a(n) = 16*A001110(n) - 2. - Hugo Pfoertner, Dec 04 2021
EXAMPLE
A001541(1) = 3, then for t = 3, 2*t^2-4 = 14; also for k = 14, 14$ / 8! = 1309248519599593818685440000000^2 and 14$ / 9! = 436416173199864606228480000000^2. Hence, 14 is a term.
MAPLE
with(orthopoly):
sequence = (2*T(n, 3)^2-4, n=1..20);
MATHEMATICA
(2*#^2 - 4) & /@ LinearRecurrence[{6, -1}, {3, 17}, 17] (* Amiram Eldar, Dec 04 2021 *)
LinearRecurrence[{35, -35, 1}, {14, 574, 19598}, 17] (* Ray Chandler, Mar 01 2024 *)
PROG
(PARI) a(n) = my(t=subst(polchebyshev(n), 'x, 3)); 2*t^2-4; \\ Michel Marcus, Dec 04 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Bernard Schott, Dec 04 2021
STATUS
approved