login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349760
Numbers k such that d(k) = A000005(k), sigma(k) = A000203(k) and phi(k) = A000010(k) are all abundant numbers (A005101).
2
84, 90, 108, 126, 132, 140, 150, 156, 180, 198, 220, 224, 228, 234, 252, 260, 276, 294, 300, 306, 308, 315, 336, 342, 348, 350, 352, 360, 364, 372, 380, 396, 414, 416, 420, 432, 444, 460, 476, 486, 490, 492, 495, 500, 504, 516, 522, 525, 528, 532, 540, 550, 558
OFFSET
1,1
COMMENTS
Sándor (2005) proved that this sequence is infinite by showing that it includes all the numbers of the form 11 * p^11 * k where p != 11 is a prime and k is any number coprime to 11*p.
LINKS
EXAMPLE
84 is a term since d(84) = 12, sigma(84) = 224 and phi(84) = 24 are all abundant numbers: sigma(12) = 28 > 2*12 = 24, sigma(224) = 504 > 2*224 = 448 and sigma(24) = 60 > 2*24 = 48.
MATHEMATICA
abQ[n_] := DivisorSigma[1, n] > 2*n; q[n_] := And @@ abQ /@ Join[DivisorSigma[{0, 1}, n], {EulerPhi[n]}]; Select[Range[500], q]
PROG
(PARI) isab(k) = sigma(k) > 2*k; \\ A005101
isok(k) = my(f=factor(k)); isab(numdiv(f)) && isab(sigma(f)) && isab(eulerphi(f)); \\ Michel Marcus, Dec 03 2021
CROSSREFS
Subsequence of A349758.
Sequence in context: A128873 A095607 A068405 * A045569 A219183 A289218
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 29 2021
STATUS
approved