login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349623
Dirichlet inverse of A326042, where A326042(n) = A064989(sigma(A003961(n))).
4
1, -1, -2, -10, -1, 2, -2, 18, -25, 1, -5, 20, -4, 2, 2, 46, -3, 25, -2, 10, 4, 5, -6, -36, -33, 4, 86, 20, -1, -2, -17, -220, 10, 3, 2, 250, -10, 2, 8, -18, -7, -4, -2, 50, 25, 6, -8, -92, -81, 33, 6, 40, -6, -86, 5, -36, 4, 1, -29, -20, -13, 17, 50, -886, 4, -10, -4, 30, 12, -2, -31, -450, -3, 10, 66, 20, 10, -8, -10
OFFSET
1,3
COMMENTS
Multiplicative because A326042 is.
FORMULA
a(1) = 1; a(n) = -Sum_{d|n, d < n} A326042(n/d) * a(d).
MATHEMATICA
f1[p_, e_] := NextPrime[p]^e; s1[1] = 1; s1[n_] := Times @@ f1 @@@ FactorInteger[n]; f2[2, e_] := 1; f2[p_, e_] := NextPrime[p, -1]^e; s2[1] = 1; s2[n_] := Times @@ f2 @@@ FactorInteger[n]; s[n_] := s2[DivisorSigma[1, s1[n]]]; a[1] = 1; a[n_] := a[n] = -DivisorSum[n, a[#]*s[n/#] &, # < n &]; Array[a, 100] (* Amiram Eldar, Nov 27 2021 *)
PROG
(PARI)
A003961(n) = my(f = factor(n)); for (i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); \\ From A003961
A064989(n) = {my(f); f = factor(n); if((n>1 && f[1, 1]==2), f[1, 2] = 0); for (i=1, #f~, f[i, 1] = precprime(f[i, 1]-1)); factorback(f)};
A326042(n) = A064989(sigma(A003961(n)));
memoA349623 = Map();
A349623(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349623, n, &v), v, v = -sumdiv(n, d, if(d<n, A326042(n/d)*A349623(d), 0)); mapput(memoA349623, n, v); (v)));
KEYWORD
sign,mult
AUTHOR
Antti Karttunen, Nov 26 2021
STATUS
approved