login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349567
Dirichlet convolution of A133494 [3^(n-1)] with A349452 (Dirichlet inverse of A011782, 2^(n-1)).
6
1, 1, 5, 17, 65, 197, 665, 2017, 6285, 19025, 58025, 174565, 527345, 1584737, 4766245, 14311841, 42981185, 128995317, 387158345, 1161697825, 3485732845, 10458138977, 31376865305, 94134428213, 282412758225, 847253996225, 2541798693045, 7625460083185, 22876524019505, 68629830861205, 205890058352825, 617671220125537
OFFSET
1,3
COMMENTS
Dirichlet convolution of this sequence with A034738 produces A034754.
LINKS
FORMULA
a(n) = Sum_{d|n} 3^(d-1) * A349452(n/d).
MATHEMATICA
s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#] * 2^(n/# - 1) &, # < n &]; a[n_] := DivisorSum[n, 3^(# - 1) * s[n/#] &]; Array[a, 32] (* Amiram Eldar, Nov 22 2021 *)
PROG
(PARI)
A011782(n) = (2^(n-1));
memoA349452 = Map();
A349452(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349452, n, &v), v, v = -sumdiv(n, d, if(d<n, A011782(n/d)*A349452(d), 0)); mapput(memoA349452, n, v); (v)));
A349567(n) = sumdiv(n, d, (3^(d-1)) * A349452(n/d));
CROSSREFS
Cf. A011782, A133494, A349452, A349568 (Dirichlet inverse).
Sequence in context: A366978 A275220 A062229 * A273483 A253067 A273793
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 22 2021
STATUS
approved