login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349565
Dirichlet convolution of Fibonacci numbers with A349452 (Dirichlet inverse of A011782, 2^(n-1)).
6
1, -1, -2, -3, -11, -16, -51, -93, -214, -419, -935, -1812, -3863, -7649, -15698, -31443, -63939, -127676, -257963, -516037, -1037298, -2076547, -4165647, -8335716, -16702015, -33421217, -66911078, -133875827, -267921227, -535987784, -1072395555, -2145208557, -4291436930, -8584038291, -17170640199, -34344407256
OFFSET
1,3
COMMENTS
Dirichlet convolution of this sequence with A034738 produces A034748.
LINKS
FORMULA
a(n) = Sum_{d|n} A000045(d) * A349452(n/d).
MATHEMATICA
s[1] = 1; s[n_] := s[n] = -DivisorSum[n, s[#] * 2^(n/# - 1) &, # < n &]; a[n_] := DivisorSum[n, Fibonacci[#] * s[n/#] &]; Array[a, 36] (* Amiram Eldar, Nov 22 2021 *)
PROG
(PARI)
A011782(n) = (2^(n-1));
memoA349452 = Map();
A349452(n) = if(1==n, 1, my(v); if(mapisdefined(memoA349452, n, &v), v, v = -sumdiv(n, d, if(d<n, A011782(n/d)*A349452(d), 0)); mapput(memoA349452, n, v); (v)));
A349565(n) = sumdiv(n, d, fibonacci(d)*A349452(n/d));
CROSSREFS
Cf. A000045, A011782, A349452, A349566 (Dirichlet inverse).
Sequence in context: A228520 A361127 A280969 * A091734 A373197 A341784
KEYWORD
sign
AUTHOR
Antti Karttunen, Nov 22 2021
STATUS
approved