login
A349554
a(n) = A054108(n) + 4*(-1)^n.
2
1, 19, 51, 201, 723, 2709, 10161, 38459, 146297, 559135, 2145021, 8255579, 31861021, 123256499, 477823891, 1855782329, 7219352971, 28125910829, 109720617991, 428537256449, 1675561707271, 6557869020329, 25689734662771, 100720871774981, 395197661173123
OFFSET
1,2
FORMULA
a(n) = C(2(n+1),n+1) - a(n-1) with a(1) = 1. - Chai Wah Wu, Jan 19 2022
MATHEMATICA
s[0] = 1; s[n_] := Binomial[2 n + 2, n + 1] - s[n - 1];
Table[s[n], {n, 0, 10}]; (* A054108 *)
a[n_] := s[n] + 4*(-1)^n;
Table[a[n], {n, 1, 30}] (* A349554 *)
PROG
(Python)
from math import comb
def A349554(n): return (1 if n % 2 else -1)*(sum((-1 if k % 2 else 1)*comb(2*k, k) for k in range(n+2))-4) # Chai Wah Wu, Jan 19 2022
(PARI) a(n) = (-1)^(n+1)*sum(k=0, n+1, (-1)^k*binomial(2*k, k)) + 4*(-1)^n; \\ Michel Marcus, Jan 19 2022
CROSSREFS
Sequence in context: A156376 A063306 A267572 * A190267 A373008 A066775
KEYWORD
nonn
AUTHOR
Clark Kimberling, Dec 30 2021
STATUS
approved