

A349539


Smallest number m in a set of at least three consecutive triangular numbers with three distinct prime factors.


1



378, 406, 528, 820, 861, 1953, 2485, 3081, 5050, 5151, 5778, 7750, 9316, 11026, 11175, 18145, 19306, 19503, 36046, 36315, 39621, 92665, 93096, 130816, 131328, 135981, 205120, 326836, 337431, 661825, 816003, 1439056, 1993006, 1995003, 2166321, 2835771
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS



EXAMPLE

a(1) = 378 because 378 is the smallest number in the first set of three consecutive triangular numbers with three distinct prime factors, i.e., (378 = 2*3^3*7, 406 = 2*7*29, 435 = 3*5*29).


MATHEMATICA

t[n_] := n*(n + 1)/2; q[n_] := PrimeNu[n] == 3; Select[Partition[t /@ Range[3*10^3], 3, 1], AllTrue[#, q] &][[;; , 1]] (* Amiram Eldar, Nov 26 2021 *)


CROSSREFS



KEYWORD

nonn


AUTHOR



EXTENSIONS



STATUS

approved



