login
A349537
Least positive integer m such that the n numbers 33*k^2*(k^3+1) (k = 1..n) are pairwise distinct modulo m.
2
1, 4, 7, 7, 13, 13, 13, 13, 13, 31, 41, 41, 61, 61, 61, 61, 61, 61, 61, 73, 101, 137, 137, 137, 137, 137, 137, 137, 137, 233, 233, 233, 233, 233, 233, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 349, 547, 547, 547, 547, 547, 547, 547, 547, 547, 547, 859, 859, 859, 859, 859, 859
OFFSET
1,2
COMMENTS
Conjecture: a(n) is prime for each n > 2.
We have verified this for n up to 10^4.
LINKS
Zhi-Wei Sun, On functions taking only prime values, J. Number Theory 133(2013), no.8, 2794-2812.
Zhi-Wei Sun, New Conjectures in Number Theory and Combinatorics (in Chinese), Harbin Institute of Technology Press, 2021.
Quan-Hui Yang and Lilu Zhao, On a conjecture of Sun involving powers of three, arXiv:2111.02746 [math.NT], 2021.
EXAMPLE
a(2) = 4 since 33*1^2*(1^3+1) = 66 and 33*2^2*(2^3+1) = 1188 are incongruent modulo 4, but they are congruent modulo each of 1, 2 and 3.
MATHEMATICA
f[k_]:=f[k]=33*k^2*(k^3+1);
U[m_, n_]:=U[m, n]=Length[Union[Table[Mod[f[k], m], {k, 1, n}]]]
tab={}; s=1; Do[m=s; Label[bb]; If[U[m, n]==n, s=m; tab=Append[tab, s]; Goto[aa]]; m=m+1; Goto[bb]; Label[aa], {n, 1, 70}]; Print[tab]
CROSSREFS
KEYWORD
nonn
AUTHOR
Zhi-Wei Sun, Nov 21 2021
STATUS
approved