login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348185
Smallest number k in a set of three consecutive triangular numbers that are sphenic.
2
406, 861, 39621, 2166321, 3924201, 11146281, 14804961, 19198306, 73951041, 83417986, 97951006, 209643526, 310415986, 522339681, 526225461, 583333246, 611153241, 801460666, 1601581906, 2520251506, 2690954841, 4455349606, 6681853401, 9895642221, 13878029901
OFFSET
1,1
COMMENTS
a(2)-a(9) from Chuck Gaydos.
LINKS
Chris K. Caldwell and G. L. Honaker, Jr., Prime Curio for 406
EXAMPLE
a(1)=406 because 406 is the smallest number in the first set of three consecutive triangular numbers that are sphenic, i.e., {406=2*7*29, 435=3*5*29, 465=3*5*31}.
MATHEMATICA
t[n_] := n*(n+1)/2; spQ[n_] := FactorInteger[n][[;; , 2]] == {1, 1, 1}; Select[Partition[t /@ Range[170000], 3, 1], AllTrue[#, spQ] &][[;; , 1]] (* Amiram Eldar, Oct 06 2021 *)
CROSSREFS
Cf. A000217 (triangular numbers), A007304 (sphenic numbers), A128896 (sphenic triangular numbers). Subsequence of A349696.
Sequence in context: A368367 A132362 A371900 * A271746 A203944 A203937
KEYWORD
nonn
AUTHOR
G. L. Honaker, Jr., Oct 05 2021
EXTENSIONS
a(10)-a(25) from Alois P. Heinz, Oct 05 2021
STATUS
approved