login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349469
Dirichlet g.f.: Sum_{n>0} a(n)/n^s = zeta(s-1)*zeta(s-3)/(zeta(s-2))^2.
1
1, 2, 12, 20, 80, 24, 252, 168, 360, 160, 1100, 240, 1872, 504, 960, 1360, 4352, 720, 6156, 1600, 3024, 2200, 11132, 2016, 10400, 3744, 9828, 5040, 22736, 1920, 27900, 10912, 13200, 8704, 20160, 7200, 47952, 12312, 22464, 13440, 65600, 6048, 75852, 22000, 28800, 22264, 99452, 16320, 88200, 20800
OFFSET
1,2
LINKS
FORMULA
Multiplicative with a(p^e) = p^e * (p^(2*e)-1) * (p-1) / (p+1) for e > 0 and prime p.
Dirichlet convolution with A057660 equals A068963.
Equals n * A340850(n) for n > 0.
Dirichlet inverse b(n) for n > 0 is multiplicative with b(1) = 1 and
b(p^e) = -(p-1)^2 * e * p^(2*e-1) for prime p and e > 0.
Sum_{k=1..n} a(k) ~ c * n^4, where c = 9*zeta(3)/Pi^4 = 0.111062... . - Amiram Eldar, Oct 16 2022
MATHEMATICA
f[p_, e_] := (p - 1)*p^e*(p^(2*e) - 1)/(p + 1); a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 50] (* Amiram Eldar, Nov 18 2021 *)
CROSSREFS
KEYWORD
nonn,easy,mult
AUTHOR
Werner Schulte, Nov 18 2021
STATUS
approved