login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349236
Gaps between cubefree numbers: a(n) = A004709(n+1) - A004709(n).
2
1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1
OFFSET
1,7
COMMENTS
This sequence is unbounded since by the Chinese Remainder Theorem there are arbitrarily long runs of consecutive numbers that are not cubefree.
The first occurrence of a(n) = 1, 2, ... is at n = 1, 7, 68, 1145, 18825, 15003967, ...
The asymptotic density of the occurrences of 1 in this sequence is density(A340152)/density(A004709) = A340153/A088453 = 0.8136635872...
LINKS
Michael J. Mossinghoff, Tomás Oliveira e Silva, and Tim Trudgian, The distribution of k-free numbers, Mathematics of Computation, Vol. 90, No. 328 (2021), pp. 907-929; arXiv preprint, arXiv:1912.04972 [math.NT], 2019-2020.
FORMULA
Asymptotic mean: lim_{n->oo} (1/n) Sum_{k=1..n} a(k) = zeta(3) (A002117).
EXAMPLE
a(1) = A004709(2) - A004709(1) = 2 - 1 = 1.
a(7) = A004709(8) - A004709(7) = 9 - 7 = 2.
MATHEMATICA
cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Differences @ Select[Range[100], cubeFreeQ]
PROG
(PARI)
A003557(n) = (n/factorback(factorint(n)[, 1]));
isA004709(n) = issquarefree(A003557(n));
A349236list(first_n) = { my(v=vector(first_n), k=0, e=1); for(n=2, oo, if(isA004709(n), k++; v[k] = n-e; e = n); if(#v==k, return(v))); }; \\ Antti Karttunen, Nov 11 2021
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 11 2021
STATUS
approved