login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Dirichlet convolution of A003415 with A003958, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).
8

%I #11 Nov 14 2021 17:44:34

%S 0,1,1,5,1,8,1,17,8,12,1,32,1,16,14,49,1,43,1,52,18,24,1,100,14,28,43,

%T 72,1,87,1,129,26,36,22,151,1,40,30,168,1,119,1,112,91,48,1,276,20,

%U 103,38,132,1,194,30,236,42,60,1,323,1,64,123,321,34,183,1,172,50,183,1,443,1,76,131,192,34,215,1,472

%N Dirichlet convolution of A003415 with A003958, where A003415 is the arithmetic derivative and A003958 is fully multiplicative with a(p) = (p-1).

%H Antti Karttunen, <a href="/A349133/b349133.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = Sum_{d|n} A003415(d) * A003958(n/d).

%F For all n >= 1, a(n) <= A349173(n).

%t f1[p_, e_] := e/p; f2[p_, e_] := (p - 1)^e; a1[1] = 0; a1[n_] := n*Plus @@ (f1 @@@ FactorInteger[n]); a2[1] = 1; a2[n_] := Times @@ f2 @@@ FactorInteger[n]; a[n_] := DivisorSum[n, a1[#] * a2[n/#] &]; Array[a, 100] (* _Amiram Eldar_, Nov 09 2021 *)

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A003958(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1]--); factorback(f); };

%o A349133(n) = sumdiv(n,d,A003415(d)*A003958(n/d));

%Y Cf. A003415, A003958, A349129, A349130, A349131, A349132, A349173.

%K nonn

%O 1,4

%A _Antti Karttunen_, Nov 09 2021