|
|
A349097
|
|
Where ones occur in A349084. These correspond to rationals, 0 < p/q < 1, that have a unique solution, p/q = 1/w + 1/x + 1/y + 1/z, 0 < w < x < y < z.
|
|
1
|
|
|
171, 250, 325, 402, 404, 458, 463, 464, 496, 595, 660, 663, 665, 702, 817, 819, 893, 896, 899, 903, 946, 1028, 1033, 1035, 1076, 1077, 1168, 1172, 1175, 1176, 1274, 1275, 1325, 1352, 1360, 1363, 1365, 1369, 1374, 1375, 1482, 1484, 1594, 1595, 1643
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For index k, p/q = A002260(k)/A003057(k).
|
|
LINKS
|
Table of n, a(n) for n=1..45.
|
|
EXAMPLE
|
171 is a term because A349084(171) = 1, indicating that 18/19 = 1/w + 1/x + 1/y + 1/z has a unique solution: 1/2 + 1/3 + 1/9 + 1/342.
|
|
CROSSREFS
|
Cf. A349084, A002260, A003057, A349090, A349095, A349096.
Sequence in context: A101273 A136365 A031900 * A120819 A115078 A183996
Adjacent sequences: A349094 A349095 A349096 * A349098 A349099 A349100
|
|
KEYWORD
|
nonn,more
|
|
AUTHOR
|
Jud McCranie, Dec 26 2021
|
|
STATUS
|
approved
|
|
|
|