

A349095


Where ones occur in A349082. These correspond to rationals, 0 < p/q < 1, that have a unique solution, p/q = 1/x + 1/y, 0 < x < y.


4



1, 2, 3, 5, 6, 7, 8, 9, 12, 13, 14, 15, 16, 17, 19, 25, 26, 27, 31, 32, 33, 34, 38, 40, 41, 42, 43, 46, 47, 48, 49, 51, 59, 61, 63, 64, 65, 67, 68, 73, 80, 82, 83, 85, 86, 87, 94, 96, 97, 100, 101, 110, 113, 114, 115, 117, 121, 122, 123, 126, 129, 142, 143, 144, 145, 146, 147, 148
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

For index k, p/q = A002260(k)/A003057(k).


LINKS

Jud McCranie, Table of n, a(n) for n = 1..500


EXAMPLE

6 is a term because A349082(6)=1, indicating that 3/4 = 1/x + 1/y has a unique solution, 1/2 + 1/4.


CROSSREFS

Cf. A349082, A002260, A003057, A349090.
Sequence in context: A007989 A349467 A182942 * A069224 A117578 A244217
Adjacent sequences: A349092 A349093 A349094 * A349096 A349097 A349098


KEYWORD

nonn


AUTHOR

Jud McCranie, Dec 24 2021


STATUS

approved



