login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A349039
Square array T(n, k) read by antidiagonals, n, k >= 0; T(n, k) = n^2 - n*k + k^2.
1
0, 1, 1, 4, 1, 4, 9, 3, 3, 9, 16, 7, 4, 7, 16, 25, 13, 7, 7, 13, 25, 36, 21, 12, 9, 12, 21, 36, 49, 31, 19, 13, 13, 19, 31, 49, 64, 43, 28, 19, 16, 19, 28, 43, 64, 81, 57, 39, 27, 21, 21, 27, 39, 57, 81, 100, 73, 52, 37, 28, 25, 28, 37, 52, 73, 100, 121, 91, 67, 49, 37, 31, 31, 37, 49, 67, 91, 121
OFFSET
0,4
COMMENTS
T(n, k) is the norm of the Eisenstein integer n + k*w (where w = -1/2 + sqrt(-3)/2 is a primitive cube root of unity).
All terms belong to A003136.
FORMULA
T(n, k) = T(k, n).
T(n, 0) = T(n, n) = n^2.
T(n, k) = A048147(n, k) - A004247(n, k).
G.f.: (x - 5*x*y + y*(1 + y) + x^2*(1 + y^2))/((1 - x)^3*(1 - y)^3). - Stefano Spezia, Nov 08 2021
EXAMPLE
Array T(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10
---+----------------------------------------------
0| 0 1 4 9 16 25 36 49 64 81 100
1| 1 1 3 7 13 21 31 43 57 73 91
2| 4 3 4 7 12 19 28 39 52 67 84
3| 9 7 7 9 13 19 27 37 49 63 79
4| 16 13 12 13 16 21 28 37 48 61 76
5| 25 21 19 19 21 25 31 39 49 61 75
6| 36 31 28 27 28 31 36 43 52 63 76
7| 49 43 39 37 37 39 43 49 57 67 79
8| 64 57 52 49 48 49 52 57 64 73 84
9| 81 73 67 63 61 61 63 67 73 81 91
10| 100 91 84 79 76 75 76 79 84 91 100
MATHEMATICA
T[n_, k_] := n^2 - n*k + k^2; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 08 2021 *)
PROG
(PARI) T(n, k) = n^2 - n*k + k^2
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Rémy Sigrist, Nov 06 2021
STATUS
approved