login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A274092
a(n) = nearest integer to k^2*sin(sqrt(k)+j*Pi/2) where n = 3*k+j, 0<=j<3.
12
0, 0, 0, 1, 1, -1, 4, 1, -4, 9, -1, -9, 15, -7, -15, 20, -15, -20, 23, -28, -23, 23, -43, -23, 20, -61, -20, 11, -80, -11, -2, -100, 2, -21, -119, 21, -46, -137, 46, -76, -151, 76, -111, -162, 111, -150, -167, 150, -194, -167, 194, -240, -161, 240, -289, -147, 289, -339, -125, 339, -389, -95, 389
OFFSET
0,7
LINKS
N. J. A. Sloane and Chai Wah Wu, Table of n, a(n) for n = 0..10000 n = 0..1000 from N. J. A. Sloane
MAPLE
Digits:=50:
ft:=proc(n, t) local k, j;
j:=(n mod t); k:=(n-j)/t;
round(evalf(k^2*sin(sqrt(k)+j*Pi/2)));
end;
[seq(ft(n, 3), n=0..120)];
PROG
(Python)
from sympy import sin, sqrt, pi
def A274092(n):
k, j = divmod(n, 3)
return int((k**2*sin(sqrt(k)+j*pi/2)).round()) # Chai Wah Wu, Jun 10 2016
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Jun 10 2016
STATUS
approved