OFFSET
0,3
FORMULA
a(0) = 1; a(n) = -a(n-1) - Sum_{k=0..n-1} (-2)^(k+1) * a(k) * a(n-k-1).
MATHEMATICA
nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 + x - 2 x A[-2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -a[n - 1] - Sum[(-2)^(k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 06 2021
STATUS
approved