login
A349038
G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(-2*x)).
2
1, 1, -3, -31, 453, 15641, -973443, -126707471, 32192101173, 16547934365321, -16912274385623763, -34670312866958030751, 141940412456349939507813, 1163060052394732038435530361, -19053251054424307861590927924003, -624375047526738670923288994646642991
OFFSET
0,3
FORMULA
a(0) = 1; a(n) = -a(n-1) - Sum_{k=0..n-1} (-2)^(k+1) * a(k) * a(n-k-1).
MATHEMATICA
nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 + x - 2 x A[-2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -a[n - 1] - Sum[(-2)^(k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]
CROSSREFS
KEYWORD
sign
AUTHOR
Ilya Gutkovskiy, Nov 06 2021
STATUS
approved