login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348901
G.f. A(x) satisfies: A(x) = 1 / (1 + x - 2 * x * A(2*x)).
5
1, 1, 5, 49, 893, 30649, 2030213, 264198625, 68180168717, 35046644401609, 35958357173552597, 73714882938928013809, 302083844634245306686685, 2475275541582550287356775001, 40559867144321249927245807932197, 1329146863668196853655964629931680001
OFFSET
0,3
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..81
Johann Cigler, Hankel determinants of backward shifts of powers of q, arXiv:2407.05768 [math.CO], 2024. See p. 6.
FORMULA
a(0) = 1; a(n) = -a(n-1) + Sum_{k=0..n-1} 2^(k+1) * a(k) * a(n-k-1).
a(n) ~ 2^(n*(n+1)/2). - Vaclav Kotesovec, Nov 03 2021
MATHEMATICA
nmax = 15; A[_] = 0; Do[A[x_] = 1/(1 + x - 2 x A[2 x]) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
a[0] = 1; a[n_] := a[n] = -a[n - 1] + Sum[2^(k + 1) a[k] a[n - k - 1], {k, 0, n - 1}]; Table[a[n], {n, 0, 15}]
CROSSREFS
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Nov 03 2021
STATUS
approved