login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A249588 G.f.: Product_{n>=1} 1/(1 - x^n/n^2) = Sum_{n>=0} a(n)*x^n/n!^2. 10
1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, 229357803456, 23289083584704, 2851295406197184, 414855423241758720, 70695451937596732416, 13958230719814052097024, 3159974451734082088897536, 813380358295803762813321216, 236172126115504055456155975680 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Paul D. Hanna, Table of n, a(n) for n = 0..100

FORMULA

a(n) = Sum_{k=1..n} n!*(n-1)!/(n-k)!^2 * b(k) * a(n-k), where b(k) = Sum_{d|k} d^(1-2*k/d) and a(0) = 1 (after Vladeta Jovovic in A007841).

a(n) ~ 2 * n!^2. - Vaclav Kotesovec, Mar 05 2016

EXAMPLE

G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 49*x^3/3!^2 + 856*x^4/4!^2 +...

where

A(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...).

MATHEMATICA

b[k_] := b[k] = DivisorSum[k, #^(1-2*k/#) &]; a[0] = 1; a[n_] := a[n] = Sum[n!*(n-1)!/(n-k)!^2*b[k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-Fran├žois Alcover, Dec 23 2015, adapted from PARI *)

Table[n!^2 * SeriesCoefficient[Product[1/(1 - x^m/m^2), {m, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 05 2016 *)

PROG

(PARI) {a(n)=n!^2*polcoeff(prod(k=1, n, 1/(1-x^k/k^2 +x*O(x^n))), n)}

for(n=0, 20, print1(a(n), ", "))

(PARI) /* Using logarithmic derivative: */

{b(k) = sumdiv(k, d, d^(1-2*k/d))}

{a(n) = if(n==0, 1, sum(k=1, n, n!*(n-1)!/(n-k)!^2 * b(k) * a(n-k)))}

for(n=0, 20, print1(a(n), ", "))

CROSSREFS

Cf. A249590, A249607, A007841, A249593, A249592, A269791, A269793, A269794.

Sequence in context: A305114 A001819 A064618 * A193199 A224680 A075986

Adjacent sequences:  A249585 A249586 A249587 * A249589 A249590 A249591

KEYWORD

nonn

AUTHOR

Paul D. Hanna, Nov 01 2014

EXTENSIONS

Name clarified by Vaclav Kotesovec, Mar 05 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 12 13:27 EDT 2020. Contains 335663 sequences. (Running on oeis4.)