login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249588
G.f.: Product_{n>=1} 1/(1 - x^n/n^2) = Sum_{n>=0} a(n)*x^n/n!^2.
13
1, 1, 5, 49, 856, 22376, 842536, 42409480, 2782192064, 229357803456, 23289083584704, 2851295406197184, 414855423241758720, 70695451937596732416, 13958230719814052097024, 3159974451734082088897536, 813380358295803762813321216, 236172126115504055456155975680
OFFSET
0,3
LINKS
FORMULA
a(n) = Sum_{k=1..n} n!*(n-1)!/(n-k)!^2 * b(k) * a(n-k), where b(k) = Sum_{d|k} d^(1-2*k/d) and a(0) = 1 (after Vladeta Jovovic in A007841).
a(n) ~ 2 * n!^2. - Vaclav Kotesovec, Mar 05 2016
EXAMPLE
G.f.: A(x) = 1 + x + 5*x^2/2!^2 + 49*x^3/3!^2 + 856*x^4/4!^2 +...
where
A(x) = 1/((1-x)*(1-x^2/4)*(1-x^3/9)*(1-x^4/16)*(1-x^5/25)*...).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+b(n-i, min(i, n-i))*((i-1)!*binomial(n, i))^2 ))
end:
a:= n-> b(n$2):
seq(a(n), n=0..17); # Alois P. Heinz, Jul 27 2023
MATHEMATICA
b[k_] := b[k] = DivisorSum[k, #^(1-2*k/#) &]; a[0] = 1; a[n_] := a[n] = Sum[n!*(n-1)!/(n-k)!^2*b[k]*a[n-k], {k, 1, n}]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Dec 23 2015, adapted from PARI *)
Table[n!^2 * SeriesCoefficient[Product[1/(1 - x^m/m^2), {m, 1, n}], {x, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 05 2016 *)
PROG
(PARI) {a(n)=n!^2*polcoeff(prod(k=1, n, 1/(1-x^k/k^2 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
(PARI) /* Using logarithmic derivative: */
{b(k) = sumdiv(k, d, d^(1-2*k/d))}
{a(n) = if(n==0, 1, sum(k=1, n, n!*(n-1)!/(n-k)!^2 * b(k) * a(n-k)))}
for(n=0, 20, print1(a(n), ", "))
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Nov 01 2014
EXTENSIONS
Name clarified by Vaclav Kotesovec, Mar 05 2016
STATUS
approved