login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A269794
G.f.: Product_{n>=1} 1/(1 - x^n/n^6) = Sum_{n>=0} a(n)*x^n/n!^6.
7
1, 1, 65, 47449, 194444416, 3038449102976, 141766192358448256, 16678817447073033946240, 4372271021740050216976646144, 2323608852183697867526563204694016, 2323611343146528421975097303187359268864, 4116421685969107286571222251382158945547976704
OFFSET
0,3
LINKS
FORMULA
a(n) ~ c * n!^6, where c = Product_{k>=2} 1/(1-1/k^6) = 6*Pi^2 / cosh(sqrt(3)*Pi/2)^2 = 1.0176208398261870492814795459985... . - Vaclav Kotesovec, Mar 05 2016
MATHEMATICA
Table[n!^6 * SeriesCoefficient[Product[1/(1-x^k/k^6), {k, 1, n}], {x, 0, n}], {n, 0, 20}]
PROG
(PARI) {a(n)=n!^6*polcoeff(prod(k=1, n, 1/(1-x^k/k^6 +x*O(x^n))), n)}
for(n=0, 20, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Mar 05 2016
STATUS
approved