login
A348998
a(n) = A348928(A276086(n)), where A348928(n) = gcd(n, A003958(n)), and A003958 is multiplicative with a(p^e) = (p-1)^e, and A276086 gives the prime product form of primorial base expansion of n.
3
1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 3, 6, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18, 1, 2, 3, 6, 9, 18
OFFSET
0,4
COMMENTS
After each primorial number (A002110), the apparent periodicity grows more complex.
PROG
(PARI) A348998(n) = { my(m1=1, m2=1, p=2); while(n, m1 *= (p^(n%p)); m2 *= ((p-1)^(n%p)); n = n\p; p = nextprime(1+p)); gcd(m1, m2); };
CROSSREFS
KEYWORD
nonn,base,look
AUTHOR
Antti Karttunen, Nov 07 2021
STATUS
approved