login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A348978
Numerator of ratio A332993(n) / sigma(n).
5
1, 1, 1, 1, 1, 5, 1, 1, 1, 8, 1, 11, 1, 11, 7, 1, 1, 31, 1, 6, 29, 17, 1, 23, 1, 20, 1, 25, 1, 17, 1, 1, 15, 26, 43, 67, 1, 29, 53, 38, 1, 71, 1, 13, 11, 35, 1, 47, 1, 27, 23, 46, 1, 47, 67, 53, 77, 44, 1, 37, 1, 47, 23, 1, 79, 37, 1, 20, 31, 113, 1, 139, 1, 56, 53, 67, 89, 131, 1, 26, 1, 62, 1, 155, 103, 65, 39, 83
OFFSET
1,6
COMMENTS
Ratio A332993(n) / sigma(n) tells how large proportion of the divisor sum we obtain if we sum just those divisors of n that can be obtained by repeatedly taking the largest proper divisor (of previous such divisor, starting from n, which is included in the sum), up to and including the terminal 1. Pair a(n) / A348979(n) shows the ratio in the lowest terms: 1/1, 1/1, 1/1, 1/1, 1/1, 5/6, 1/1, 1/1, 1/1, 8/9, 1/1, 11/14, 1/1, 11/12, 7/8, 1/1, 1/1, 31/39, 1/1, 6/7, 29/32, 17/18, 1/1, 23/30, etc. The ratio is 1 for all powers of primes (A000961).
FORMULA
a(n) = A332993(n) / A348977(n) = A332993(n) / gcd(A000203(n), A332993(n)).
MATHEMATICA
f[n_] := n/FactorInteger[n][[1, 1]]; g[1] = 1; g[n_] := g[n] = n + g[f[n]]; a[n_] := Numerator[g[n]/DivisorSigma[1, n]]; Array[a, 100] (* Amiram Eldar, Nov 06 2021 *)
PROG
(PARI)
A332993(n) = if(1==n, n, n + A332993(n/vecmin(factor(n)[, 1])));
A348978(n) = { my(u=A332993(n)); (u/gcd(sigma(n), u)); };
CROSSREFS
Cf. A000203, A000961, A332993, A333783, A348977, A348979 (denominators).
Cf. also A348988, A348989.
Sequence in context: A292771 A369364 A322837 * A168677 A345939 A140210
KEYWORD
nonn,frac
AUTHOR
Antti Karttunen, Nov 06 2021
STATUS
approved