OFFSET
2,2
COMMENTS
This is a Sequence Transform of A086615. A086615(n-2) counts the Motzkin Paths of length n which start with an u-step, return to the horizontal level once with a d-step and remain there (with any number of trailing h-steps). These might be called single-return M-Paths. The path of length n=2 is ud. The paths of length 3 are udh, uhd. The Paths of length 4 are uudd, udhh, uhdh and uhhd. A Motzkin Path can be chopped into subpaths of that type by splitting it at each u-step that starts from the horizontal line. [The exception is the path that consists entirely of h-steps.] The triangle of the Sequence Transform T(n,c) counts how many Motzkin Paths of length n which start with an u-step are concatenations of c of these single-return M-paths. T(n,1) are the single-return M-Paths. Row sums and column 1 are an INVERT transform pair.
FORMULA
G.f.: 1/(1-y*g086615(x)) where g086615(x) = x^2 +2*x^3 +4*x^4 +8*x^5 +17*x^6 +....
EXAMPLE
The triangle starts
1
2
4 1
8 4
17 12 1
38 32 6
89 82 24 1
216 208 80 8
539 530 243 40 1
1374 1364 702 160 10
3562 3551 1975 564 60 1
9360 9348 5484 1840 280 12
24871 24858 15144 5716 1125 84 1
66706 66692 41768 17208 4102 448 14
T(4,2)=1 counts udud.
T(5,1)=8 counts uuddh uudhd uuhdd udhhh uhudd uhdhh uhhdh uhhhd.
T(5,2)=4 counts ududh uduhd udhud uhdud.
T(2n,n) = 1 counts udududu... (ud repeated n times).
MAPLE
MATHEMATICA
b[n_] := b[n] = If[n <= 3, 2^n, (3*(n+1)*b[n-1] + (n-4)*b[n-2] - 3*(n-1)*b[n-3])/(n+2)];
T[n_, c_] := Module[{g, x, y}, g = Sum[b[i]*x^(i+2), {i, 0, n}]; 1/(1-y*g) // SeriesCoefficient[#, {x, 0, n}]& // SeriesCoefficient[#, {y, 0, c}]&];
Table[T[n, c], {n, 2, 15}, {c, 1, n/2}] // Flatten (* Jean-François Alcover, Aug 12 2023, after Maple code *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Nov 02 2021
STATUS
approved