login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348869
Triangle T(n,c) counting Motzkin Paths of length n with c sections starting with an up-step at level 0.
3
1, 2, 4, 1, 8, 4, 17, 12, 1, 38, 32, 6, 89, 82, 24, 1, 216, 208, 80, 8, 539, 530, 243, 40, 1, 1374, 1364, 702, 160, 10, 3562, 3551, 1975, 564, 60, 1, 9360, 9348, 5484, 1840, 280, 12, 24871, 24858, 15144, 5716, 1125, 84, 1, 66706, 66692, 41768, 17208, 4102, 448, 14
OFFSET
2,2
COMMENTS
This is a Sequence Transform of A086615. A086615(n-2) counts the Motzkin Paths of length n which start with an u-step, return to the horizontal level once with a d-step and remain there (with any number of trailing h-steps). These might be called single-return M-Paths. The path of length n=2 is ud. The paths of length 3 are udh, uhd. The Paths of length 4 are uudd, udhh, uhdh and uhhd. A Motzkin Path can be chopped into subpaths of that type by splitting it at each u-step that starts from the horizontal line. [The exception is the path that consists entirely of h-steps.] The triangle of the Sequence Transform T(n,c) counts how many Motzkin Paths of length n which start with an u-step are concatenations of c of these single-return M-paths. T(n,1) are the single-return M-Paths. Row sums and column 1 are an INVERT transform pair.
FORMULA
G.f.: 1/(1-y*g086615(x)) where g086615(x) = x^2 +2*x^3 +4*x^4 +8*x^5 +17*x^6 +....
EXAMPLE
The triangle starts
1
2
4 1
8 4
17 12 1
38 32 6
89 82 24 1
216 208 80 8
539 530 243 40 1
1374 1364 702 160 10
3562 3551 1975 564 60 1
9360 9348 5484 1840 280 12
24871 24858 15144 5716 1125 84 1
66706 66692 41768 17208 4102 448 14
T(4,2)=1 counts udud.
T(5,1)=8 counts uuddh uudhd uuhdd udhhh uhudd uhdhh uhhdh uhhhd.
T(5,2)=4 counts ududh uduhd udhud uhdud.
T(2n,n) = 1 counts udududu... (ud repeated n times).
MAPLE
A348869 := proc(n, c)
local g, x, y ;
g := add( A086615(i)*x^(i+2), i=0..n) ;
1/(1-y*g) ;
coeftayl(%, x=0, n) ;
coeftayl(%, y=0, c) ;
end proc:
seq(seq( A348869(n, c), c=1..n/2), n=2..10) ;
MATHEMATICA
b[n_] := b[n] = If[n <= 3, 2^n, (3*(n+1)*b[n-1] + (n-4)*b[n-2] - 3*(n-1)*b[n-3])/(n+2)];
T[n_, c_] := Module[{g, x, y}, g = Sum[b[i]*x^(i+2), {i, 0, n}]; 1/(1-y*g) // SeriesCoefficient[#, {x, 0, n}]& // SeriesCoefficient[#, {y, 0, c}]&];
Table[T[n, c], {n, 2, 15}, {c, 1, n/2}] // Flatten (* Jean-François Alcover, Aug 12 2023, after Maple code *)
CROSSREFS
Cf. A086615 (column c=1), A002026 (row sums)
Sequence in context: A152195 A133156 A207538 * A127529 A091977 A112829
KEYWORD
nonn,tabf
AUTHOR
R. J. Mathar, Nov 02 2021
STATUS
approved