login
A348757
Decimal expansion of the area of a regular pentagram inscribed in a unit-radius circle.
0
1, 1, 2, 2, 5, 6, 9, 9, 4, 1, 4, 4, 8, 9, 6, 3, 4, 3, 1, 1, 0, 4, 8, 6, 2, 8, 7, 9, 4, 9, 3, 8, 1, 6, 9, 6, 8, 9, 4, 8, 0, 3, 1, 2, 0, 5, 8, 0, 2, 7, 0, 8, 7, 9, 8, 4, 8, 6, 1, 9, 6, 5, 8, 5, 4, 2, 2, 0, 1, 8, 8, 9, 1, 1, 9, 7, 5, 5, 2, 0, 6, 6, 4, 9, 1, 0, 7, 6, 4, 4, 3, 7, 7, 3, 3, 5, 6, 4, 5, 1, 2, 2, 1, 0, 3
OFFSET
1,3
COMMENTS
An algebraic number of degree 4. The smaller of the two positive roots of the equation 16*x^4 - 2500*x^2 + 3125 = 0.
REFERENCES
Robert B. Banks, Slicing Pizzas, Racing Turtles, and Further Adventures in Applied Mathematics, Princeton University Press, 2012, p. 15.
LINKS
Herta T. Freitag, Problem 3855, School Science and Mathematics, Vol. 81, No. 4 (1981), p. 352; Solution to Problem 3855 by David A. Blaeuer, ibid., Vol. 82, No. 3 (1982), pp. 265-266.
Mathematics Stack Exchange, Area of a five pointed star, 2014.
Wikipedia, Pentagram.
FORMULA
Equals 5*sin(Pi/5)/phi^2, where phi is the golden ratio (A001622).
Equals 5/(cot(Pi/5) + cot(Pi/10)).
Equals 10*tan(Pi/10)/(3 - tan(Pi/10)^2).
Equals (5/2)*sqrt((25 -11*sqrt(5))/2).
Equals 5*(5 - sqrt(5))/(4*sqrt(5 + 2*sqrt(5))) = A094874 * A179050 = 10 * A094874 / A344172.
EXAMPLE
1.12256994144896343110486287949381696894803120580270...
MATHEMATICA
RealDigits[5*Sin[Pi/5]/GoldenRatio^2, 10, 100][[1]]
KEYWORD
nonn,cons
AUTHOR
Amiram Eldar, Nov 12 2021
STATUS
approved