login
A348718
Numbers whose divisors can be partitioned into two disjoint sets without singletons whose arithmetic means are both integers.
2
6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96
OFFSET
1,1
COMMENTS
First differs from A343311 at n = 29.
Differs from A080257 which contains for example 8 and 128. - R. J. Mathar, Nov 03 2021
LINKS
EXAMPLE
6 is a term since its set of divisors, {1, 2, 3, 6}, can be partitioned into the two disjoint sets {1, 3} and {2, 6} whose arithmetic means, 2 and 4 respectively, are both integers.
MATHEMATICA
amQ[d_] := IntegerQ @ Mean[d]; q[n_] := Module[{d = Divisors[n], nd, s, subs, ans = False}, nd = Length[d]; subs = Subsets[d]; Do[s = subs[[k]]; If[Length[s] > 1 && Length[s] <= nd/2 && amQ[s] && amQ[Complement[d, s]], ans = True; Break[]], {k, 1, Length[subs]}]; ans]; Select[Range[100], q]
KEYWORD
nonn
AUTHOR
Amiram Eldar, Oct 31 2021
STATUS
approved