login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A343311
Numbers of the form x + y + z with distinct positive integers x,y,z such that (x+y+z) | x*y*z.
2
6, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 26, 27, 28, 30, 32, 33, 34, 35, 36, 38, 39, 40, 42, 44, 45, 46, 48, 49, 50, 51, 52, 54, 55, 56, 57, 58, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 77, 78, 80, 81, 82, 84, 85, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100
OFFSET
1,1
COMMENTS
From Robert Israel, Apr 12 2021: (Start)
All terms are composite.
Conjecture: Consists of all composite numbers except 4, 8, 9, and 25. (End)
LINKS
EXAMPLE
10 is in the sequence since 10 = 1+4+5 = 2+3+5, (1+4+5) | 1*4*5 and (2+3+5) | 2*3*5.
12 is in the sequence since 12 = 1+3+8 = 2+4+6 = 3+4+5, (1+3+8) | 1*3*8, (2+4+6) | 2*4*6 and (3+4+5) | 3*4*5.
MAPLE
filter:= proc(n) local x, y, z;
if isprime(n) then return false fi;
x:= min(numtheory:-factorset(n));
y:= n/x;
z:= n - x - y;
if z > 0 and nops({x, y, z}) = 3 then return true fi;
for x from 1 to n/3 do
for y from x+1 while x+2*y+1 <= n do
z:= n-x-y;
if x*y*z mod n = 0 then return true fi;
od od;
false
end proc:
select(filter, [$1..100]); # Robert Israel, Apr 12 2021
MATHEMATICA
Table[If[Sum[Sum[(1 - KroneckerDelta[i, j]) (1 - KroneckerDelta[n - j, 2 i]) (1 - KroneckerDelta[n - i, 2 j]) (1 - Ceiling[i*j*(n - i - j)/n] + Floor[i*j*(n - i - j)/n]), {i, j, Floor[(n - j)/2]}], {j, Floor[n/3]}] > 0, n, {}], {n, 100}] // Flatten
CROSSREFS
Cf. A343270.
Sequence in context: A361109 A317719 A329367 * A348718 A325265 A105642
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Apr 11 2021
STATUS
approved