OFFSET
1,9
LINKS
Gary Chartrand, Linda Eroh, Mark A. Johnson, and Ortrud R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Applied Mathematics 105 (2000), 99-113.
Richard C. Tillquist, Rafael M. Frongillo, and Manuel E. Lladser, Getting the lay of the land in discrete space: a survey of metric dimension and its applications, arXiv:2104.07201 [math.CO], 2021.
Wikipedia, Metric dimension
FORMULA
T(n,1) = 1 for n >= 2, because the only graphs with metric dimension 1 are the paths of positive lengths (Chartrand et al. 2000).
T(n,n-2) = A047209(n-2) = floor(5*n/2-6) for n >= 3 (follows from the complete description of graphs with n nodes and metric dimension n-2 by Chartrand et al. 2000).
T(n,n-1) = 1 for n >= 1 , because the only graph with n nodes and metric dimension n-1 is the complete graph (Chartrand et al. 2000).
EXAMPLE
Triangle begins:
n\k| 0 1 2 3 4 5 6 7 8 9
---+------------------------------------------------
1 | 1
2 | 0 1
3 | 0 1 1
4 | 0 1 4 1
5 | 0 1 13 6 1
6 | 0 1 62 39 9 1
7 | 0 1 275 488 77 11 1
8 | 0 1 1710 8116 1145 130 14 1
9 | 0 1 12061 216432 29958 2415 196 16 1
10 | 0 1 93706 9512947 2026922 78265 4434 276 19 1
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Pontus von Brömssen, Jan 26 2022
STATUS
approved