login
A348554
Irregular triangle read by rows: row n gives the divisors d of 2*n with 1 < d < 2*n, for n >= 2.
0
2, 2, 3, 2, 4, 2, 5, 2, 3, 4, 6, 2, 7, 2, 4, 8, 2, 3, 6, 9, 2, 4, 5, 10, 2, 11, 2, 3, 4, 6, 8, 12, 2, 13, 2, 4, 7, 14, 2, 3, 5, 6, 10, 15, 2, 4, 8, 16, 2, 17, 2, 3, 4, 6, 9, 12, 18, 2, 19, 2, 4, 5, 8, 10, 20, 2, 3, 6, 7, 14, 21, 2, 4, 11, 22, 2, 23, 2, 3, 4, 6, 8, 12, 16, 24, 2, 5, 10, 25
OFFSET
2,1
COMMENTS
This gives the rows 2*n of A137510, for n >= 2.
The length of row n is A069930(n) = tau(2*n) - 2 = A099777(n) - 2.
The sum of row n is A346880(n) = A062731(n) - (2*n + 1).
FORMULA
T(n, k) = A137510(2*n, k), for n >= 2 and k = 1, 2, ..., A069930(n).
EXAMPLE
The irregular triangle T(n, k) begins:
n, 2*n / k 1 2 3 4 5 6 7 ...
----------------------------------
2, 4: 2
3, 6: 2 3
4, 8: 2 4
5, 10: 2 5
6 12: 2 3 4 6
7, 14: 2 7
8, 16: 2 4 8
9, 18: 2 3 6 9
10, 20: 2 4 5 10
11, 22: 2 11
12, 24: 2 3 4 6 8 12
13, 26: 2 13
14, 28: 2 4 7 14
15, 30: 2 3 5 6 10 15
16, 32: 2 4 8 1
17, 34: 2 17
18, 36: 2 3 4 6 9 12 18
19, 38: 2 19
20, 40: 2 4 5 8 10 20
...
MATHEMATICA
Flatten@Table[Select[Divisors[2n], 1<#<2n&], {n, 2, 25}] (* Giorgos Kalogeropoulos, Oct 22 2021 *)
PROG
(PARI) row(n) = select(x->((x>1) && (x<2*n)), divisors(2*n)); \\ Michel Marcus, Oct 23 2021
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Wolfdieter Lang, Oct 22 2021
STATUS
approved