login
Irregular triangle read by rows: row n gives the divisors d of 2*n with 1 < d < 2*n, for n >= 2.
0

%I #9 Dec 13 2021 17:07:25

%S 2,2,3,2,4,2,5,2,3,4,6,2,7,2,4,8,2,3,6,9,2,4,5,10,2,11,2,3,4,6,8,12,2,

%T 13,2,4,7,14,2,3,5,6,10,15,2,4,8,16,2,17,2,3,4,6,9,12,18,2,19,2,4,5,8,

%U 10,20,2,3,6,7,14,21,2,4,11,22,2,23,2,3,4,6,8,12,16,24,2,5,10,25

%N Irregular triangle read by rows: row n gives the divisors d of 2*n with 1 < d < 2*n, for n >= 2.

%C This gives the rows 2*n of A137510, for n >= 2.

%C The length of row n is A069930(n) = tau(2*n) - 2 = A099777(n) - 2.

%C The sum of row n is A346880(n) = A062731(n) - (2*n + 1).

%F T(n, k) = A137510(2*n, k), for n >= 2 and k = 1, 2, ..., A069930(n).

%e The irregular triangle T(n, k) begins:

%e n, 2*n / k 1 2 3 4 5 6 7 ...

%e ----------------------------------

%e 2, 4: 2

%e 3, 6: 2 3

%e 4, 8: 2 4

%e 5, 10: 2 5

%e 6 12: 2 3 4 6

%e 7, 14: 2 7

%e 8, 16: 2 4 8

%e 9, 18: 2 3 6 9

%e 10, 20: 2 4 5 10

%e 11, 22: 2 11

%e 12, 24: 2 3 4 6 8 12

%e 13, 26: 2 13

%e 14, 28: 2 4 7 14

%e 15, 30: 2 3 5 6 10 15

%e 16, 32: 2 4 8 1

%e 17, 34: 2 17

%e 18, 36: 2 3 4 6 9 12 18

%e 19, 38: 2 19

%e 20, 40: 2 4 5 8 10 20

%e ...

%t Flatten@Table[Select[Divisors[2n],1<#<2n&],{n,2,25}] (* _Giorgos Kalogeropoulos_, Oct 22 2021 *)

%o (PARI) row(n) = select(x->((x>1) && (x<2*n)), divisors(2*n)); \\ _Michel Marcus_, Oct 23 2021

%Y Cf. A069930, A099777, A137510, A346880.

%K nonn,tabf

%O 2,1

%A _Wolfdieter Lang_, Oct 22 2021