OFFSET
1,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (0,1,0,1,0,0,0,-1,0,-1,0,1).
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1-((j+1) mod 2)*((i+1) mod 2)*((n-i-j+1) mod 2)).
G.f.: -x^3*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^12-x^10-x^8+x^4+x^2-1). - Alois P. Heinz, Oct 22 2021
a(n) = a(n-2)+a(n-4)-a(n-8)-a(n-10)+a(n-12). - Wesley Ivan Hurt, Nov 18 2021
MATHEMATICA
a[n_] := Sum[1 - Mod[j + 1, 2] * Mod[i + 1, 2] * Mod[n - i - j + 1, 2], {j, 1, Floor[n/3]}, {i, j, Floor[(n - j)/2]}]; Array[a, 100] (* Amiram Eldar, Oct 22 2021 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 21 2021
STATUS
approved