login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348543
Number of partitions of n into 3 parts with at least 1 odd part.
0
0, 0, 1, 1, 2, 2, 4, 4, 7, 6, 10, 9, 14, 12, 19, 16, 24, 20, 30, 25, 37, 30, 44, 36, 52, 42, 61, 49, 70, 56, 80, 64, 91, 72, 102, 81, 114, 90, 127, 100, 140, 110, 154, 121, 169, 132, 184, 144, 200, 156, 217, 169, 234, 182, 252, 196, 271, 210, 290, 225, 310, 240, 331, 256, 352
OFFSET
1,5
FORMULA
a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1-((j+1) mod 2)*((i+1) mod 2)*((n-i-j+1) mod 2)).
G.f.: -x^3*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^12-x^10-x^8+x^4+x^2-1). - Alois P. Heinz, Oct 22 2021
a(n) = a(n-2)+a(n-4)-a(n-8)-a(n-10)+a(n-12). - Wesley Ivan Hurt, Nov 18 2021
MATHEMATICA
a[n_] := Sum[1 - Mod[j + 1, 2] * Mod[i + 1, 2] * Mod[n - i - j + 1, 2], {j, 1, Floor[n/3]}, {i, j, Floor[(n - j)/2]}]; Array[a, 100] (* Amiram Eldar, Oct 22 2021 *)
CROSSREFS
Cf. A069905.
Sequence in context: A341949 A338333 A287144 * A085893 A341950 A230167
KEYWORD
nonn,easy
AUTHOR
Wesley Ivan Hurt, Oct 21 2021
STATUS
approved