login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into 3 parts with at least 1 odd part.
0

%I #14 Nov 18 2021 13:24:02

%S 0,0,1,1,2,2,4,4,7,6,10,9,14,12,19,16,24,20,30,25,37,30,44,36,52,42,

%T 61,49,70,56,80,64,91,72,102,81,114,90,127,100,140,110,154,121,169,

%U 132,184,144,200,156,217,169,234,182,252,196,271,210,290,225,310,240,331,256,352

%N Number of partitions of n into 3 parts with at least 1 odd part.

%H <a href="/index/Par#part">Index entries for sequences related to partitions</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,1,0,1,0,0,0,-1,0,-1,0,1).

%F a(n) = Sum_{j=1..floor(n/3)} Sum_{i=j..floor((n-j)/2)} (1-((j+1) mod 2)*((i+1) mod 2)*((n-i-j+1) mod 2)).

%F G.f.: -x^3*(x^6+x^5+x^4+x^3+x^2+x+1)/(x^12-x^10-x^8+x^4+x^2-1). - _Alois P. Heinz_, Oct 22 2021

%F a(n) = a(n-2)+a(n-4)-a(n-8)-a(n-10)+a(n-12). - _Wesley Ivan Hurt_, Nov 18 2021

%t a[n_] := Sum[1 - Mod[j + 1, 2] * Mod[i + 1, 2] * Mod[n - i - j + 1, 2], {j, 1, Floor[n/3]}, {i, j, Floor[(n - j)/2]}]; Array[a, 100] (* _Amiram Eldar_, Oct 22 2021 *)

%Y Cf. A069905.

%K nonn,easy

%O 1,5

%A _Wesley Ivan Hurt_, Oct 21 2021