login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348544
Positive integers that are equal both to the product of two integers ending with 3 and to that of two integers ending with 7.
1
189, 399, 459, 609, 729, 819, 969, 999, 1029, 1239, 1269, 1449, 1479, 1539, 1659, 1729, 1809, 1869, 1989, 2079, 2109, 2289, 2349, 2499, 2619, 2639, 2679, 2709, 2889, 2919, 3009, 3059, 3129, 3159, 3219, 3249, 3339, 3429, 3519, 3549, 3699, 3759, 3819, 3969, 4029
OFFSET
1,1
COMMENTS
Intersection of A346950 and A348054.
FORMULA
Lim_{n->infinity} a(n)/a(n-1) = 1.
EXAMPLE
189 = 7*27 = 3*63, 399 = 3*133 = 7*57, 459 = 3*153 = 17*27, 609 = 3*203 = 7*87, ...
MATHEMATICA
max=4050; Select[Intersection[Union@Flatten@Table[a*b, {a, 3, Floor[max/3], 10}, {b, a, Floor[max/a], 10}], Union@Flatten@Table[a*b, {a, 7, Floor[max/7], 10}, {b, a, Floor[max/a], 10}]], 0<#<max&]
PROG
(PARI) isok(m) = my(ok3=0, ok7=0); fordiv(m, d, if (((d % 10) == 3) && ((m/d % 10) == 3), ok3++); if (((d % 10) == 7) && ((m/d % 10) == 7), ok7++); if (ok3 && ok7, return(1))); \\ Michel Marcus, Oct 22 2021
(Python)
def aupto(lim): return sorted(set(a*b for a in range(3, lim//3+1, 10) for b in range(a, lim//a+1, 10)) & set(a*b for a in range(7, lim//7+1, 10) for b in range(a, lim//a+1, 10)))
print(aupto(4029)) # Michael S. Branicky, Oct 22 2021
CROSSREFS
Cf. A017377 (supersequence), A346950, A348054, A348546.
Sequence in context: A320709 A224674 A076759 * A211815 A347390 A292173
KEYWORD
nonn,base
AUTHOR
Stefano Spezia, Oct 22 2021
STATUS
approved