login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = gcd(A003415(n), A347130(n)), where A003415 is the arithmetic derivative and A347130 is its Dirichlet convolution with the identity function.
3

%I #9 Feb 02 2022 20:36:34

%S 0,1,1,2,1,5,1,12,3,7,1,16,1,9,8,16,1,21,1,24,10,13,1,44,5,15,27,32,1,

%T 31,1,80,14,19,12,30,1,21,16,68,1,41,1,48,39,25,1,112,7,45,20,56,1,81,

%U 16,92,22,31,1,92,1,33,51,96,18,61,1,72,26,59,1,156,1,39,55,80,18,71,1,176,54,43,1,124,22,45

%N a(n) = gcd(A003415(n), A347130(n)), where A003415 is the arithmetic derivative and A347130 is its Dirichlet convolution with the identity function.

%H Antti Karttunen, <a href="/A348497/b348497.txt">Table of n, a(n) for n = 1..20000</a>

%F a(n) = gcd(A003415(n), A347130(n)).

%F a(n) = A003557(n) * A348498(n).

%t f[n_] := If[n < 2, 0, n Total[#2/#1 & @@@ FactorInteger[n]]]; Table[GCD[f[n], DivisorSum[n, # f[n/#] &]], {n, 86}] (* _Michael De Vlieger_, Oct 25 2021 *)

%o (PARI)

%o A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));

%o A347130(n) = sumdiv(n,d,d*A003415(n/d));

%o A348497(n) = gcd(A003415(n), A347130(n));

%Y Cf. A003415, A003557, A347130, A348498.

%Y Cf. also A348492, A348495.

%K nonn

%O 1,4

%A _Antti Karttunen_, Oct 23 2021