login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A348384
Heinz numbers of integer partitions whose length is 2/3 their sum.
2
1, 6, 36, 40, 216, 224, 240, 1296, 1344, 1408, 1440, 1600, 6656, 7776, 8064, 8448, 8640, 8960, 9600, 34816, 39936, 46656, 48384, 50176, 50688, 51840, 53760, 56320, 57600, 64000, 155648, 208896, 239616, 266240, 279936, 290304, 301056, 304128, 311040, 315392
OFFSET
1,2
COMMENTS
The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are numbers whose sum of prime indices is 3/2 their number. Counting the partitions with these Heinz numbers gives A035377(n) = A000041(n/3) if n is a multiple of 3, otherwise 0.
LINKS
FORMULA
The sequence contains n iff A056239(n) = 3*A001222(n)/2. Here, A056239 adds up prime indices, while A001222 counts them with multiplicity.
Intersection of A028260 and A347452.
EXAMPLE
The terms and their prime indices begin:
1: {}
6: {1,2}
36: {1,1,2,2}
40: {1,1,1,3}
216: {1,1,1,2,2,2}
224: {1,1,1,1,1,4}
240: {1,1,1,1,2,3}
1296: {1,1,1,1,2,2,2,2}
1344: {1,1,1,1,1,1,2,4}
1408: {1,1,1,1,1,1,1,5}
1440: {1,1,1,1,1,2,2,3}
1600: {1,1,1,1,1,1,3,3}
6656: {1,1,1,1,1,1,1,1,1,6}
7776: {1,1,1,1,1,2,2,2,2,2}
MATHEMATICA
Select[Range[1000], 2*Total[Cases[FactorInteger[#], {p_, k_}:>k*PrimePi[p]]]==3*PrimeOmega[#]&]
PROG
(PARI)
A056239(n) = { my(f); if(1==n, 0, f=factor(n); sum(i=1, #f~, f[i, 2] * primepi(f[i, 1]))); }
isA348384(n) = (A056239(n)==(3/2)*bigomega(n)); \\ Antti Karttunen, Nov 22 2021
CROSSREFS
These partitions are counted by A035377.
Rounding down gives A348550 or A347452, counted by A108711 or A119620.
A000041 counts integer partitions.
A001222 counts prime factors with multiplicity.
A056239 adds up prime indices, row sums of A112798.
A316524 gives the alternating sum of prime indices (reverse: A344616).
A344606 counts alternating permutations of prime factors.
Sequence in context: A222929 A222784 A043063 * A328466 A232137 A008460
KEYWORD
nonn
AUTHOR
Gus Wiseman, Nov 13 2021
STATUS
approved