login
A348157
Table read by antidiagonals: T(n,k) = number of factorizations of (n,k) into one or two pairs (i,j) with i > 0, j > 0 (and if i=1 then j=1).
2
1, 0, 1, 0, 1, 1, 0, 1, 1, 2, 0, 1, 1, 2, 1, 0, 1, 1, 2, 1, 2, 0, 1, 1, 3, 1, 3, 1, 0, 1, 1, 2, 1, 3, 1, 2, 0, 1, 1, 3, 1, 4, 1, 3, 2, 0, 1, 1, 2, 1, 3, 1, 3, 2, 2, 0, 1, 1, 3, 1, 5, 1, 4, 2, 3, 1, 0, 1, 1, 3, 1, 3, 1, 3, 3, 3, 1, 3, 0, 1, 1, 3, 1, 5, 1, 5, 2, 4, 1, 5, 1, 0, 1, 1, 2, 1, 4, 1, 3, 3, 3, 1, 5, 1, 2
OFFSET
1,10
COMMENTS
(a,b)*(x,y) = (a*x,b*y); unit is (1,1).
FORMULA
For n > 1, T(n,m) = ceiling((tau(n)-2)*tau(m)/2) + 1, where tau(n) = A000005(n). - Franklin T. Adams-Watters, Jun 23 2010.
EXAMPLE
Table begins
1 0 0 0 0 ...
1 1 1 1 1 ...
1 1 1 1 1 ...
2 2 2 3 2 ...
1 1 1 1 1 ...
...
(6,4) = (3,4)*(2,1) = (3,1)*(2,4) = (3,2)*(2,2), so a(6,4)=4.
MATHEMATICA
rows = 14; t[n_, m_] := Ceiling[(DivisorSigma[0, n] - 2)*DivisorSigma[0, m]/2]+1; t[1, 1] = 1; t[1, _] = 0; ft = Flatten[ Table[ t[n-m+1, m], {n, 1, rows}, {m, n, 1, -1}]] (* Jean-François Alcover, Nov 18 2011, after Franklin T. Adams-Watters *)
CROSSREFS
Cf. A108455 (any number of pairs), A108461. Column 1: A001055.
Sequence in context: A227003 A307431 A263848 * A108455 A193759 A117468
KEYWORD
nonn,tabl
AUTHOR
Sean A. Irvine, Oct 03 2021
STATUS
approved