OFFSET
1,2
COMMENTS
For each ordered pair of divisors of n, (d1,d2), a(n) can also be found using the algorithm: add d1 if d2 is prime; otherwise add 1. For example, when n = 4 the divisor pairs are: (1,1), (1,2), (1,4), (2,1), (2,2), (2,4), (4,1), (4,2), (4,4) which gives 1 + 1 + 1 + 1 + 2 + 1 + 1 + 4 + 1 = 13.
FORMULA
a(n) = Sum_{d1|n} Sum_{d2|n} d1^c(d2), where c = A010051.
a(prime(n)) = prime(n) + 3.
MATHEMATICA
Table[DivisorSigma[0, n] (DivisorSigma[0, n] - PrimeNu[n]) + PrimeNu[n] DivisorSigma[1, n], {n, 80}]
PROG
(PARI) a(n) = my(f=factor(n), d=numdiv(f)); d^2 + omega(f)*(sigma(f) - d); \\ Michel Marcus, Oct 05 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Oct 03 2021
STATUS
approved