login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347979
a(n) is the smallest even number k whose symmetric representation of sigma(k) has maximum width n.
5
2, 6, 60, 120, 360, 840, 3360, 2520, 5040, 10080, 15120, 32760, 27720, 50400, 98280, 83160, 110880, 138600, 221760, 277200, 332640, 360360, 554400, 960960, 831600, 942480, 720720, 2217600, 1965600, 1441440
OFFSET
1,1
COMMENTS
For the 30 known terms the symmetric representation of sigma consists of a single part, i.e., this is a subsequence of A174973 = A238443.
The sequence is not increasing with the maximum width of the symmetric representation of sigma.
Also a(33) = 2162160 is the only further number in the sequence less than 2500000.
FORMULA
It appears that a(n) = A250070(n) if n >= 2.
EXAMPLE
The pattern of maximum widths within the single part of the symmetric representation of sigma for the first four numbers in the sequence is:
a(n) parts successive widths
2: 1 1
6: 1 1 2 1
60: 1 1 2 3 2 3 2 1
120: 1 1 2 3 4 3 2 1
MATHEMATICA
a262045[n_] := Module[{a=Accumulate[Map[If[Mod[n - # (#+1)/2, #]==0, (-1)^(#+1), 0] &, Range[Floor[(Sqrt[8n+1]-1)/2]]]]}, Join[a, Reverse[a]]]
a347979[n_, mw_] := Module[{list=Table[0, mw], i, v}, For[i=2, i<=n, i+=2, v=Max[a262045[i]]; If [list[[v]]==0, list[[v]]=i]]; list]
a347979[2500000, 33] (* computes a(1..30), a(33); a(31..32) > 2500000 *)
KEYWORD
nonn,more
AUTHOR
Hartmut F. W. Hoft, Sep 22 2021
STATUS
approved