OFFSET
1,4
COMMENTS
The number of entries in the n-th row of the table of this sequence is A001227(n), the number of odd divisors of n.
Let number n = 2^s * q with s >= 0 and q odd, let row(n) = floor( (sqrt(8*n+1) - 1)/2 ), let D_n = { d : d odd divisor of n and d <= row(n) }, let E_n = { e : e = 2^(s+1) * d, d in D_n and e <= row(n) } and let F_n be the union of D_n and E_n with its elements listed in increasing order. Then the numbers in F_n are exactly the positions of 1's in row n of A237048 and the numbers in row n of this sequence.
FORMULA
EXAMPLE
a(8, 9) = { 1, 3 } is row 6 in this sequence with corresponding row 6 { 1, 0, 1 } in A237048.
a(26...29) = { 1, 2, 3, 5 } is row 15 in this sequence with corresponding row 15 { 1, 1, 1, 0, 1 } in A237048.
Table of the first 15 rows:
row entries
1 1
2 1
3 1 1
4 1
5 1 2
6 1 3
7 1 2
8 1
9 1 2 3
10 1 4
11 1 2
12 1 3
13 1 2
14 1 4
15 1 2 3 5
MATHEMATICA
row[n_] := Floor[(Sqrt[8 n+1]-1)/2]
oddD[n_] := Select[Divisors[n], OddQ[#]&&#<=row[n]&]
twoExp[n_] := Module[{f=FactorInteger[n]}, If[First[First[f]]==2, Last[First[f]], 0]]
dualD[n_] := Select[Map[2^(twoExp[n]+1)#&, oddD[n]], #<=row[n]&]
a341970[n_] := Union[oddD[n], dualD[n]]
Flatten[Map[a341970, Range[40]]] (* first 40 rows of table *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Hartmut F. W. Hoft, Feb 24 2021
STATUS
approved