login
A347881
Odd numbers k for which A003415(sigma(k^2)) > k^2, where A003415 is the arithmetic derivative.
3
105, 201, 231, 237, 259, 273, 315, 333, 399, 429, 455, 469, 483, 525, 553, 555, 585, 603, 627, 651, 665, 693, 711, 741, 763, 777, 819, 855, 871, 903, 975, 1001, 1005, 1027, 1057, 1071, 1085, 1113, 1119, 1141, 1155, 1185, 1197, 1209, 1221, 1235, 1273, 1281, 1287, 1295, 1351, 1365, 1395, 1407, 1443, 1449, 1463, 1467, 1501
OFFSET
1,1
COMMENTS
Odd numbers k such that A342926(k^2) is strictly positive.
Square roots of odd squares present in A343218.
MATHEMATICA
ad[1] = 0; ad[n_] := n * Total@(Last[#]/First[#]& /@ FactorInteger[n]); Select[Range[1, 1501, 2], ad[DivisorSigma[1, #^2]] > #^2 &] (* Amiram Eldar, Sep 18 2021 *)
PROG
(PARI)
A003415(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]/f[i, 1]));
isA347881(n) = ((n%2)&&(A003415(sigma(n^2))>(n^2)));
CROSSREFS
Cf. A000203, A003415, A343218, A342926, A347882 (subsequence).
Sequence in context: A026066 A167629 A326141 * A044337 A044718 A239827
KEYWORD
nonn
AUTHOR
Antti Karttunen, Sep 18 2021
STATUS
approved