login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347718
a(n) = Sum of the divisors of sigma_n(n).
2
1, 6, 56, 448, 6264, 96348, 1559520, 16908804, 391945400, 20553536052, 706019328000, 20210523379200, 519285252355776, 21710734431216480, 1456143373228677120, 25536237889612326912, 1792353900753729655758, 52839150354952425838080, 4154723599066412190910560
OFFSET
1,2
LINKS
FORMULA
a(n) = sigma(sigma_n(n)).
a(n) = A000203(A023887(n)). - Michel Marcus, Jan 29 2022
EXAMPLE
a(3) = sigma(sigma_3(3)) = sigma(1^3+3^3) = sigma(28) = 1+2+4+7+14+28 = 56.
MAPLE
a:= n-> (s-> s(s[n](n)))(numtheory[sigma]):
seq(a(n), n=1..20); # Alois P. Heinz, Jan 28 2022
MATHEMATICA
Table[DivisorSigma[1, DivisorSigma[n, n]], {n, 20}]
PROG
(Python)
from math import prod
from collections import Counter
from sympy import factorint
def A347718(n): return prod((q**(r+1)-1)//(q-1) for q, r in sum((Counter(factorint((p**(n*(e+1))-1)//(p**n-1))) for p, e in factorint(n).items()), Counter()).items()) # Chai Wah Wu, Jan 28 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, Jan 28 2022
STATUS
approved