login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347673
Number of Baxter matrices of size 3 X n.
3
1, 14, 69, 203, 463, 903, 1585, 2579, 3963, 5823, 8253, 11355, 15239, 20023, 25833, 32803, 41075, 50799, 62133, 75243, 90303, 107495, 127009, 149043, 173803, 201503, 232365, 266619, 304503, 346263, 392153, 442435, 497379, 557263, 622373, 693003, 769455, 852039
OFFSET
1,2
LINKS
Michael S. Branicky, Table of n, a(n) for n = 1..65
George Spahn, Counting Baxter Matrices, arXiv:2110.09688 [math.CO], 2021.
FORMULA
From George Spahn, Oct 20 2021: (Start)
a(n) = 1/3*n^4 + 3*n^3 - 16/3*n^2 + 2*n + 3 for n >= 3.
G.f.: -x*(x^6 - 3*x^5 + 3*x^4 - 12*x^3 + 9*x^2 + 9*x + 1)/(x - 1)^5. (End)
MATHEMATICA
Rest@ CoefficientList[Series[-x (x^6 - 3 x^5 + 3 x^4 - 12 x^3 + 9 x^2 + 9 x + 1)/(x - 1)^5, {x, 0, 38}], x] (* Michael De Vlieger, Oct 20 2021 *)
CROSSREFS
Row 3 of A347672.
Sequence in context: A254004 A238822 A244943 * A249708 A008354 A051879
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 10 2021
EXTENSIONS
a(8)-a(38) from Michael S. Branicky, Sep 13 2021
STATUS
approved