login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of Baxter matrices of size 3 X n.
3

%I #35 Aug 03 2022 07:03:50

%S 1,14,69,203,463,903,1585,2579,3963,5823,8253,11355,15239,20023,25833,

%T 32803,41075,50799,62133,75243,90303,107495,127009,149043,173803,

%U 201503,232365,266619,304503,346263,392153,442435,497379,557263,622373,693003,769455,852039

%N Number of Baxter matrices of size 3 X n.

%H Michael S. Branicky, <a href="/A347673/b347673.txt">Table of n, a(n) for n = 1..65</a>

%H George Spahn, <a href="https://arxiv.org/abs/2110.09688">Counting Baxter Matrices</a>, arXiv:2110.09688 [math.CO], 2021.

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F From _George Spahn_, Oct 20 2021: (Start)

%F a(n) = 1/3*n^4 + 3*n^3 - 16/3*n^2 + 2*n + 3 for n >= 3.

%F G.f.: -x*(x^6 - 3*x^5 + 3*x^4 - 12*x^3 + 9*x^2 + 9*x + 1)/(x - 1)^5. (End)

%t Rest@ CoefficientList[Series[-x (x^6 - 3 x^5 + 3 x^4 - 12 x^3 + 9 x^2 + 9 x + 1)/(x - 1)^5, {x, 0, 38}], x] (* _Michael De Vlieger_, Oct 20 2021 *)

%Y Row 3 of A347672.

%K nonn,easy

%O 1,2

%A _N. J. A. Sloane_, Sep 10 2021

%E a(8)-a(38) from _Michael S. Branicky_, Sep 13 2021