login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(2n+1) = a(n) for n >= 0, a(2n) = a(n) + a(n - 2^A007814(n)) for n > 0 with a(0) = 1.
7

%I #63 Dec 23 2024 02:25:55

%S 1,1,2,1,3,2,3,1,4,3,5,2,6,3,4,1,5,4,7,3,9,5,7,2,10,6,9,3,10,4,5,1,6,

%T 5,9,4,12,7,10,3,14,9,14,5,16,7,9,2,15,10,16,6,19,9,12,3,20,10,14,4,

%U 15,5,6,1,7,6,11,5,15,9,13,4,18,12,19,7,22,10,13

%N a(2n+1) = a(n) for n >= 0, a(2n) = a(n) + a(n - 2^A007814(n)) for n > 0 with a(0) = 1.

%C Scatter plot might be called "Cypress forest on a windy day". - _Antti Karttunen_, Nov 30 2021

%H Antti Karttunen, <a href="/A347205/b347205.txt">Table of n, a(n) for n = 0..16384</a>

%H J. Abate and W. Whitt, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL14/Whitt/whitt6.html">Brownian Motion and the Generalized Catalan Numbers</a>, J. Int. Seq. 14 (2011) # 11.2.6.

%H <a href="/index/Gra#graphs_plots">Index entries for sequences with interesting graphs or plots</a>

%F a(2n+1) = a(n) for n >= 0.

%F a(2n) = a(n) + a(n - 2^A007814(n)) = a(2*A059894(n)) for n > 0 with a(0) = 1.

%F Sum_{k=0..2^n - 1} a(k) = A000108(n+1) for n >= 0.

%F a((4^n - 1)/3) = A000108(n) for n >= 0.

%F a(2^m*(2^n - 1)) = binomial(n + m, n) for n >= 0, m >= 0.

%F Generalization:

%F b(2n+1, p, q) = b(n, p, q) for n >= 0.

%F b(2n, p, q) = p*b(n, p, q) + q*b(n - 2^A007814(n), p, q) = for n > 0 with b(0, p, q) = 1.

%F Conjectured formulas: (Start)

%F Sum_{k=0..2^n - 1} b(k, 2, 1) = A006318(n) for n >= 0.

%F Sum_{k=0..2^n - 1} b(k, 2, 2) = A115197(n) for n >= 0.

%F Sum_{k=0..2^n - 1} b(k, 3, 1) = A108524(n+1) for n >= 0.

%F Sum_{k=0..2^n - 1} b(k, 3, 3) = A116867(n) for n >= 0.

%F b((4^n - 1)/3, p, q) is generalized Catalan number C(p, q; n). (End)

%F Conjecture: a(n) = T(n, wt(n)+1), a(2n) = Sum_{k=1..wt(n)+1} T(n, k) where T(2n+1, k) = T(n, k) for 1 <= k <= wt(n)+1, T(2n+1, wt(n)+2) = T(n, wt(n)+1), T(2n, k) = Sum_{i=1..k} T(n, i) for 1 <= k <= wt(n)+1 with T(0, 1) = 1. - _Mikhail Kurkov_, Dec 13 2024

%t a[0] = 1; a[n_] := a[n] = If[OddQ[n], a[(n - 1)/2], a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]]]; Array[a, 100, 0] (* _Amiram Eldar_, Sep 06 2021 *)

%o (PARI) a(n) = if (n==0, 1, if (n%2, a(n\2), a(n/2) + a(n/2 - 2^valuation(n/2, 2)))); \\ _Michel Marcus_, Sep 09 2021

%Y Cf. A000108, A006318, A007814, A059894, A108524, A115197, A116867.

%Y Similar recurrences: A124758, A243499, A284005, A329369, A341392.

%K nonn,look

%O 0,3

%A _Mikhail Kurkov_, Aug 23 2021