login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A347205
a(2n+1) = a(n) for n >= 0, a(2n) = a(n) + a(n - 2^A007814(n)) for n > 0 with a(0) = 1.
7
1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 6, 3, 4, 1, 5, 4, 7, 3, 9, 5, 7, 2, 10, 6, 9, 3, 10, 4, 5, 1, 6, 5, 9, 4, 12, 7, 10, 3, 14, 9, 14, 5, 16, 7, 9, 2, 15, 10, 16, 6, 19, 9, 12, 3, 20, 10, 14, 4, 15, 5, 6, 1, 7, 6, 11, 5, 15, 9, 13, 4, 18, 12, 19, 7, 22, 10, 13
OFFSET
0,3
COMMENTS
Scatter plot might be called "Cypress forest on a windy day". - Antti Karttunen, Nov 30 2021
FORMULA
a(2n+1) = a(n) for n >= 0.
a(2n) = a(n) + a(n - 2^A007814(n)) = a(2*A059894(n)) for n > 0 with a(0) = 1.
Sum_{k=0..2^n - 1} a(k) = A000108(n+1) for n >= 0.
a((4^n - 1)/3) = A000108(n) for n >= 0.
a(2^m*(2^n - 1)) = binomial(n + m, n) for n >= 0, m >= 0.
Generalization:
b(2n+1, p, q) = b(n, p, q) for n >= 0.
b(2n, p, q) = p*b(n, p, q) + q*b(n - 2^A007814(n), p, q) = for n > 0 with b(0, p, q) = 1.
Conjectured formulas: (Start)
Sum_{k=0..2^n - 1} b(k, 2, 1) = A006318(n) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 2, 2) = A115197(n) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 3, 1) = A108524(n+1) for n >= 0.
Sum_{k=0..2^n - 1} b(k, 3, 3) = A116867(n) for n >= 0.
b((4^n - 1)/3, p, q) is generalized Catalan number C(p, q; n). (End)
Conjecture: a(n) = T(n, wt(n)+1), a(2n) = Sum_{k=1..wt(n)+1} T(n, k) where T(2n+1, k) = T(n, k) for 1 <= k <= wt(n)+1, T(2n+1, wt(n)+2) = T(n, wt(n)+1), T(2n, k) = Sum_{i=1..k} T(n, i) for 1 <= k <= wt(n)+1 with T(0, 1) = 1. - Mikhail Kurkov, Dec 13 2024
MATHEMATICA
a[0] = 1; a[n_] := a[n] = If[OddQ[n], a[(n - 1)/2], a[n/2] + a[n/2 - 2^IntegerExponent[n/2, 2]]]; Array[a, 100, 0] (* Amiram Eldar, Sep 06 2021 *)
PROG
(PARI) a(n) = if (n==0, 1, if (n%2, a(n\2), a(n/2) + a(n/2 - 2^valuation(n/2, 2)))); \\ Michel Marcus, Sep 09 2021
CROSSREFS
KEYWORD
nonn,look
AUTHOR
Mikhail Kurkov, Aug 23 2021
STATUS
approved