OFFSET
0,4
COMMENTS
It is not surprising to see dyadic self-similarity in the graph of this sequence. For example the graph of a(0..2^9) looks like a rescaled version of a(0..2^8). Each of these intervals reminds a bit of particle traces in a cloud chamber.
LINKS
Thomas Scheuerle, Table of n, a(n) for n = 0..5000
FORMULA
a(n) <= Sum_{k=0..n} A070939(k).
EXAMPLE
pos:0,1,2,3,4,5,6,7,8,9,...
c: 0|1|0,1|1,1|0,0,1|1,0,1...
0 a(0) = 0
. 1 a(1) = 1
0 1 a(2) = 0
. . . 1 1 a(3) = 3
. . . . . . 0 0 1 a(4) = 6
. 1 0 1 a(5) = 1
. . 0 1 1 a(6) = 2
PROG
(MATLAB)
function a = A347196( max_n)
c = 0; a = 0;
for n = 1:max_n
b = bitget(n, 1:64);
c = [c b(1:find(b == 1, 1, 'last' ))];
end
for n = 1:max_n
b = bitget(n, 1:64);
word = b(1:find(b == 1, 1, 'last' ));
pos = strfind(c, word);
a(n+1) = pos(1)-1;
end
end
CROSSREFS
KEYWORD
AUTHOR
Thomas Scheuerle, Aug 22 2021
STATUS
approved