%I #35 Oct 09 2021 15:55:57
%S 0,1,0,3,6,1,2,3,18,5,0,8,6,1,2,13,50,17,32,4,23,9,7,29,18,5,0,37,34,
%T 1,12,13,130,49,88,16,67,31,20,3,56,22,24,8,6,38,28,84,50,17,32,4,70,
%U 9,39,36,90,33,0,40,110,11,12,43,322,129,224,48,175,87,53,15
%N Let c(k) be the infinite binary string 010111001... (A030308), the concatenation of reverse order integer binary words ( 0;1;01;11;001;101;... ). a(n) is the bit index k of the first occurrence of the reverse order binary word of n ( n = 2^0*c(a(n)) + 2^1*c(a(n)+1) + ... ).
%C It is not surprising to see dyadic self-similarity in the graph of this sequence. For example the graph of a(0..2^9) looks like a rescaled version of a(0..2^8). Each of these intervals reminds a bit of particle traces in a cloud chamber.
%H Thomas Scheuerle, <a href="/A347196/b347196.txt">Table of n, a(n) for n = 0..5000</a>
%F a(n) <= Sum_{k=0..n} A070939(k).
%e pos:0,1,2,3,4,5,6,7,8,9,...
%e c: 0|1|0,1|1,1|0,0,1|1,0,1...
%e 0 a(0) = 0
%e . 1 a(1) = 1
%e 0 1 a(2) = 0
%e . . . 1 1 a(3) = 3
%e . . . . . . 0 0 1 a(4) = 6
%e . 1 0 1 a(5) = 1
%e . . 0 1 1 a(6) = 2
%o (MATLAB)
%o function a = A347196( max_n)
%o c = 0; a = 0;
%o for n = 1:max_n
%o b = bitget(n,1:64);
%o c = [c b(1:find(b == 1, 1, 'last' ))];
%o end
%o for n = 1:max_n
%o b = bitget(n,1:64);
%o word = b(1:find(b == 1, 1, 'last' ));
%o pos = strfind(c, word);
%o a(n+1) = pos(1)-1;
%o end
%o end
%Y Cf. A030304, A030308, A030311, A070939.
%K nonn,base,easy,look
%O 0,4
%A _Thomas Scheuerle_, Aug 22 2021