login
A347192
Integers k such that the number of divisors of k^2 - 1 (A347191) sets a new record.
3
2, 3, 5, 7, 11, 17, 19, 29, 41, 71, 109, 161, 169, 181, 379, 449, 649, 701, 881, 1079, 1189, 1871, 2449, 3079, 4159, 5851, 11969, 19601, 23561, 23869, 24751, 43471, 82081, 94249, 157249, 222641, 252449, 313039, 627199, 677249, 790399, 1276001, 2308879, 4058209
OFFSET
1,1
COMMENTS
The first ten terms are the same as A090481 and A189828, then a(11) = 109 while A090481(11) = 179 and A189828(11) = 161.
The first eleven terms are the same as A335325, then a(12) = 161, which is nonprime, while A335325(12) = 181.
The corresponding records obtained are 2, 4, 8, 10, 16, 18, 24, 32, 40, 60, 64, 70, 80, 96, ...
LINKS
Adrian Dudek, On the Number of Divisors of n^2-1, arXiv:1507.08893 [math.NT], 2015.
EXAMPLE
tau(71^2-1) = 60 and there is no integer k < 71 such that tau(k^2-1) >= 60, hence 71 is a term and a(10) = 71.
MATHEMATICA
s[n_] := DivisorSigma[0, n^2 - 1]; sm = 0; seq = {}; Do[If[(sn = s[n]) > sm, sm = sn; AppendTo[seq, n]], {n, 2, 10^6}]; seq (* Amiram Eldar, Sep 16 2021 *)
DeleteDuplicates[Table[{k, DivisorSigma[0, k^2-1]}, {k, 2, 4060000}], GreaterEqual[#1[[2]], #2[[2]]]&] [[;; , 1]] (* Harvey P. Dale, Dec 04 2023 *)
CROSSREFS
Cf. A090481, A189828, A335325 (similar, with k = p prime).
Sequence in context: A262835 A258261 A228424 * A335325 A189828 A090481
KEYWORD
nonn
AUTHOR
Bernard Schott, Sep 16 2021
STATUS
approved